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1 Hilbert Space Review

1.1 Inner products

In functional analysis, we need to use a field with a topological structure. In this course,
we will use the fields F ∈ {R,C}.

Definition 1.1. Let H be a vector space over F. A semi-inner product 〈·, ·〉 : H×H → F
is a function such that

1. 〈αx+ βy, z〉 = α 〈x, z〉+ β 〈y, z〉

2. 〈x, y〉 = 〈y, x〉

3. 〈x, x〉 ≥ 0.

This is an inner product if 〈x, x〉 = 0 =⇒ x = 0.1

Example 1.1. Fn has the inner product 〈x, y〉 =
∑n

i=1 xiyi.

Example 1.2. F∞ = {(xi)∞i=1 ∈ FN : xi = 0 for all sufficiently large i} has the inner
product 〈x, y〉 =

∑∞
i=1 xiyi.

Example 1.3. L2
F(µ) = {f : X → F : f measurable,

∫
|f |2 dµ <∞} has the inner product

〈f, g〉 =
∫
fg dµ.

1.2 Norm and metric structure

Theorem 1.1 (Cauchy-Bunyakowski-Schwarz inequality). Any semi-inner product satis-
fies

| 〈x, y〉 | ≤
√
〈x, x〉

√
〈y, y〉.

Corollary 1.1. If we set ‖x‖ :=
√
〈x, x〉, then

1This is sometimes referred to as the inequality being “coercive.”
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• ‖x+ y‖ ≤ ‖x‖+ ‖y‖

• ‖λx‖ = |λ| · ‖x‖ ∀λ ∈ F, x ∈ H.

Definition 1.2. ‖ · ‖ is called the (semi-) norm associated to the (semi-) inner product.

Proposition 1.1 (Polar identity).

‖x+ y‖2 = ‖x‖2 + 2 Re(〈x, y〉) + ‖y‖2

Remark 1.1. We get the imaginary part, too, because

Re 〈−ix, y〉 = Re(−i 〈x, y〉) = Im 〈x, y〉 .

Definition 1.3. The associated metric to an inner product is d(x, y) := ‖x− y‖.

Definition 1.4. A Hilbert space is an inner product space which is complete with respect
to this metric.

Example 1.4. Fn is a Hilbert space.

Example 1.5. F∞ is not complete, so it is not a Hilbert space.

Example 1.6. L2(µ) is a Hilbert space.

Proposition 1.2. If (H, 〈·, ·〉) is an inner product space, then there is a Hilbert space
(H ′, 〈·, ·〉′) such that

• H ⊆ H ′, and H is dense,

• 〈·, ·〉′ |H×H = 〈·, ·〉.

The space H ′ is called the completion of H.

Example 1.7. The completion of F∞ is `2 = {(xi)∞i=1 ∈ FN :
∑∞

i=1 |xi|2 < ∞} with the
inner product 〈x, y〉 =

∑∞
i=1 xiyi. This is also L2(m), where m is counting measure on N.

Example 1.8. Let G ⊆ C be open. Then the Bergman space L2
a(G), the set of L2

functions that are analytic in G, is a Hilbert space.

1.3 Orthogonality

Definition 1.5. Elements x, y ∈ H are orthogonal (denoted x ⊥ y) if 〈x, y〉 = 0. If
A,B ⊆ H, we say A ⊥ B if x ⊥ y for all (x, y) ∈ A×B.

Theorem 1.2 (Pythagorean identity). Let H be a semi-inner product space, and let xn ∈
H be such that xi ⊥ xj for all i 6= j. Then

‖x1 + · · ·+ xn‖2 = ‖x1‖2 + · · ·+ ‖xn‖2.
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Corollary 1.2 (Parallelogram law). For any x, y ∈ H,

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

Definition 1.6. A ⊆ H is convex if whenever x, y ∈ A, tx+ (1− t)y ∈ A for all t ∈ [0, 1].

Proposition 1.3. Let H be a Hilbert space, let h ∈ H, and let K ⊆ H be nonempty,
closed, and convex. Then there is a unique k ∈ K such that ‖h − k‖ ≤ ‖h − k′‖ for all
k′ ∈ K.

Corollary 1.3. This holds if K is a closed subspace of H.

Theorem 1.3. If M is a closed subspace of a Hilbert space and h ∈ H, then f ∈M is the
closest point to h iff f ∈M and h− f ⊥M .

Definition 1.7. If A ⊆ H, the orthogonal complement of A is A⊥ = {h ∈ H : h ⊥ A}.

Remark 1.2. For any A, A⊥ is a closed, linear subspace.2

Theorem 1.4. Let M ⊆ H, h ∈ H, and let Ph be the closest point in M to h. Then

1. P (ah+ h′) = aPh+ Ph′

2. ‖Ph‖ ≤ ‖h‖

3. P 2h = Ph

4. kerP = M⊥, and imP = M .

Definition 1.8. P = PM is called the orthogonal projection onto M .

Corollary 1.4. (A⊥)⊥ = spanA.

Corollary 1.5. If Y is a linear subspace of H, then Y is dense in H if and only if
Y ⊥ = {0}.

2You could put in a picture of a rabbit, and A⊥ would be a closed subspace.
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