Math 255A' Lecture 1 Notes

Daniel Raban

September 27, 2019

1 Hilbert Space Review

1.1 Inner products

In functional analysis, we need to use a field with a topological structure. In this course, we will use the fields $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$.

Definition 1.1. Let *H* be a vector space over \mathbb{F} . A semi-inner product $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{F}$ is a function such that

1. $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$

2.
$$\langle x, y \rangle = \langle y, x \rangle$$

3.
$$\langle x, x \rangle \ge 0$$
.

This is an **inner product** if $\langle x, x \rangle = 0 \implies x = 0.^1$

Example 1.1. \mathbb{F}^n has the inner product $\langle x, y \rangle = \sum_{i=1}^n x_i \overline{y}_i$.

Example 1.2. $\mathbb{F}^{\infty} = \{(x_i)_{i=1}^{\infty} \in \mathbb{F}^{\mathbb{N}} : x_i = 0 \text{ for all sufficiently large } i\}$ has the inner product $\langle x, y \rangle = \sum_{i=1}^{\infty} x_i \overline{y}_i$.

Example 1.3. $L^2_{\mathbb{F}}(\mu) = \{f : X \to \mathbb{F} : f \text{ measurable}, \int |f|^2 d\mu < \infty\}$ has the inner product $\langle f, g \rangle = \int f \overline{g} d\mu$.

1.2 Norm and metric structure

Theorem 1.1 (Cauchy-Bunyakowski-Schwarz inequality). Any semi-inner product satisfies

$$|\langle x,y\rangle| \le \sqrt{\langle x,x\rangle}\sqrt{\langle y,y\rangle}$$

Corollary 1.1. If we set $||x|| := \sqrt{\langle x, x \rangle}$, then

¹This is sometimes referred to as the inequality being "coercive."

- $||x+y|| \le ||x|| + ||y||$
- $\|\lambda x\| = |\lambda| \cdot \|x\|$ $\forall \lambda \in \mathbb{F}, x \in H.$

Definition 1.2. $\|\cdot\|$ is called the (semi-) norm associated to the (semi-) inner product. **Proposition 1.1** (Polar identity).

$$||x + y||^{2} = ||x||^{2} + 2\operatorname{Re}(\langle x, y \rangle) + ||y||^{2}$$

Remark 1.1. We get the imaginary part, too, because

$$\operatorname{Re}\langle -ix, y \rangle = \operatorname{Re}(-i \langle x, y \rangle) = \operatorname{Im} \langle x, y \rangle.$$

Definition 1.3. The associated metric to an inner product is d(x, y) := ||x - y||.

Definition 1.4. A **Hilbert space** is an inner product space which is complete with respect to this metric.

Example 1.4. \mathbb{F}^n is a Hilbert space.

Example 1.5. \mathbb{F}^{∞} is not complete, so it is not a Hilbert space.

Example 1.6. $L^2(\mu)$ is a Hilbert space.

Proposition 1.2. If $(H, \langle \cdot, \cdot \rangle)$ is an inner product space, then there is a Hilbert space $(H', \langle \cdot, \cdot \rangle')$ such that

- $H \subseteq H'$, and H is dense,
- $\langle \cdot, \cdot \rangle' |_{H \times H} = \langle \cdot, \cdot \rangle.$

The space H' is called the **completion** of H.

Example 1.7. The completion of \mathbb{F}^{∞} is $\ell^2 = \{(x_i)_{i=1}^{\infty} \in \mathbb{F}^{\mathbb{N}} : \sum_{i=1}^{\infty} |x_i|^2 < \infty\}$ with the inner product $\langle x, y \rangle = \sum_{i=1}^{\infty} x_i \overline{y}_i$. This is also $L^2(m)$, where *m* is counting measure on \mathbb{N} .

Example 1.8. Let $G \subseteq \mathbb{C}$ be open. Then the **Bergman space** $L^2_a(G)$, the set of L^2 functions that are analytic in G, is a Hilbert space.

1.3 Orthogonality

Definition 1.5. Elements $x, y \in H$ are **orthogonal** (denoted $x \perp y$) if $\langle x, y \rangle = 0$. If $A, B \subseteq H$, we say $A \perp B$ if $x \perp y$ for all $(x, y) \in A \times B$.

Theorem 1.2 (Pythagorean identity). Let H be a semi-inner product space, and let $x_n \in H$ be such that $x_i \perp x_j$ for all $i \neq j$. Then

$$||x_1 + \dots + x_n||^2 = ||x_1||^2 + \dots + ||x_n||^2.$$

Corollary 1.2 (Parallelogram law). For any $x, y \in H$,

$$||x + y||^{2} + ||x - y||^{2} = 2(||x||^{2} + ||y||^{2}).$$

Definition 1.6. $A \subseteq H$ is convex if whenever $x, y \in A, tx + (1-t)y \in A$ for all $t \in [0, 1]$.

Proposition 1.3. Let H be a Hilbert space, let $h \in H$, and let $K \subseteq H$ be nonempty, closed, and convex. Then there is a unique $k \in K$ such that $||h - k|| \leq ||h - k'||$ for all $k' \in K$.

Corollary 1.3. This holds if K is a closed subspace of H.

Theorem 1.3. If M is a closed subspace of a Hilbert space and $h \in H$, then $f \in M$ is the closest point to h iff $f \in M$ and $h - f \perp M$.

Definition 1.7. If $A \subseteq H$, the **orthogonal complement** of A is $A^{\perp} = \{h \in H : h \perp A\}$.

Remark 1.2. For any A, A^{\perp} is a closed, linear subspace.²

Theorem 1.4. Let $M \subseteq H$, $h \in H$, and let Ph be the closest point in M to h. Then

- 1. P(ah+h') = aPh+Ph'
- 2. $||Ph|| \le ||h||$
- 3. $P^2h = Ph$
- 4. ker $P = M^{\perp}$, and im P = M.

Definition 1.8. $P = P_M$ is called the **orthogonal projection** onto M.

Corollary 1.4. $(A^{\perp})^{\perp} = \overline{\operatorname{span}} A.$

Corollary 1.5. If Y is a linear subspace of H, then Y is dense in H if and only if $Y^{\perp} = \{0\}.$

²You could put in a picture of a rabbit, and A^{\perp} would be a closed subspace.